The abbreviation "NOTA" denotes "None of These Answers."

Diagrams are not necessarily drawn to scale.

1. Which set does not always define a plane?
A. three noncollinear points.
B. two distinct intersecting lines.
C. two parallel lines
D. a line and a point
E. NOTA
2. Parallelogram $A B C D$ has $m \angle A=70^{\circ}$. If $m \angle B=(2 x+10)^{\circ}$ then $x=$
A. 30
B. 40
C. 50
D. 70
E. NOTA
3. An equilateral triangle has perimeter 9. What is the height of the triangle?
A. 4.5
B. $3 \sqrt{3}$
C. $\frac{9 \sqrt{3}}{2}$
D. $\frac{3 \sqrt{3}}{2}$
E. NOTA
4. A quadrilateral RSTU is inscribed in a circle. If $m \angle R=30^{\circ}$ and $m \angle S=40^{\circ}$ then give the $m \angle T$.
A. 30°
B. 40°
C. 140°
D. 150°
E. NOTA
5. In right $\triangle A B C, \overline{A B}$ is the hypotenuse and is 2 cm more than the longest leg. The other leg is half of $\overline{A B}$. Give the length of the shortest leg, in cm.
A. $4 \sqrt{2}+3$
B. $4 \sqrt{3}$
C. $2 \sqrt{3}+4$
D. $\sqrt{3}+6$
E. NOTA
6. The area of a regular rhombus is half of the area of a triangle. One side of the rhombus is 15. If one side of that triangle has length 12, then find the height to that side.
A. 78
B. 75
C. 74
D. 72
E. NOTA
7. A regular pentagon has one interior angle which has measure $2 x$ degrees. Give the value of $x+8$.
A. 62
B. 61
C. 60
D. 59
E. NOTA
8. In the circle shown, $m \angle R V S=a^{\circ}$.

Find an expression for
 $m \angle R V S+m \angle R U S-m \angle R T S$.
A. a°
B. $2 a^{\circ}$
C. $3 a^{\circ}$
D. 0
E. NOTA
9.

$\overline{D B}$ is parallel to $\overline{E C}$ and $A B=3, D B=5$, and $E C=6$. Find the length $B C$ to the nearest tenth place.
A. 4.0
B. 3.6
C. 1.7
D. 0.6
E. NOTA
10. Given rectangle $A B C D$ with $A B=15 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$, circles with centers at E and F are inscribed in $\triangle A B D$ and $\triangle B C D$. Find $E F$ in cm .
A. $\sqrt{85} \mathrm{~cm}$
B. $6 \sqrt{2} \mathrm{~cm}$
C. $\sqrt{82} \mathrm{~cm}$
D. $5 \sqrt{3} \mathrm{~cm}$
E. NOTA
11. $\overline{\mathrm{DA}}$ is tangent to the circle at A. The measure of $\operatorname{arc} B C$ is 112°. Find $m \angle B A D$.

A. 34°
B. 45°
C. 56°
D. 68°
E. NOTA
12. A circle passes through two vertices and the orthocenter of an equilateral triangle with sides of length $2 \sqrt{3} \mathrm{~cm}$. Find the area of this circle.
A. $4 \pi \mathrm{~cm}^{2}$
B. $2 \sqrt{3} \pi \mathrm{~cm}^{2}$
C. $3 \sqrt{2} \pi \mathrm{~cm}^{2}$
D. $3 \pi \mathrm{~cm}^{2}$
E. NOTA
13. An ornithologist stands 280 ft from the face of a vertical cliff and observes an eagle's nest on a ledge. She measures the tangent of the angle of elevation to be 3/7. If the height of her eye is 5 ft when she measures the tangent, how high is the nest?
A. 120 ft
B. 125 ft
C. 137 ft
D. 140 ft
E. NOTA
14. The incenter of $\triangle A B C$ is located at point D. If $m \angle C=32^{\circ}$, find $m \angle A D B$.
A. 106°
B. 116°
C. 148°
D. 164°
E. NOTA
15. Triangle $A B C$ contains sides $A B=8 \mathrm{~cm}$, $B C=12 \mathrm{~cm}, A C=16 \mathrm{~cm} . M$ is the midpoint of $\overline{A C}$. Find the length of $\overline{M B}$.
A. $2 \sqrt{10} \mathrm{~cm}$
B. 8 cm
C. $4 \sqrt{3} \mathrm{~cm}$
D. 6 cm
E. NOTA
16. If $x \| y, m \angle 1=111-a$ and $m \angle 4=4 a-42$, then find $m \angle 5$.

A. 37°
B. 74°
C. 106°
D. 143°
E. NOTA
17. A right rectangular prism with dimensions (in cm) of 12,15 and 16 is inscribed in a sphere. Find the surface area of the sphere.
A. $625 \pi \mathrm{~cm}^{2}$
B. $440 \pi \mathrm{~cm}^{2}$
C. $360 \sqrt{3} \pi \mathrm{~cm}^{2}$
D. $32 \sqrt{185} \pi \mathrm{~cm}^{2}$
E. NOTA
18. In the diagram $m \overparen{A B}=108^{\circ}$ and $m \overparen{C D}=64^{\circ}$. Find $m \angle A E B$.

A. 84°
B. 86°
C. 94°
D. 106°
E. NOTA
19. An altitude of a right triangle intersects the hypotenuse at a point that divides it into a ratio of 4 to 9 . If the hypotenuse measures 7 , find the length of the altitude.
A. $\frac{42}{13}$
B. $\frac{63}{4}$
C. $\frac{28}{9}$
D. $\frac{36}{7}$
E. NOTA
20. Secant $\overline{P A}$ intersects a circle at points A and B so that $A B$ is 19 cm and $P B$ is 8 cm . Find the length of tangent segment $\overline{P T}$.

A. 13.5 cm
B. $9 \sqrt{3} \mathrm{~cm}$
C. 11 cm
D. $6 \sqrt{6} \mathrm{~cm}$
E. NOTA
21. A regular octagon has a side of length 12 cm . Find its area.
A. $(288+288 \sqrt{2}) \mathrm{cm}^{2}$
B. $(144+576 \sqrt{2}) \mathrm{cm}^{2}$
C. $(288+144 \sqrt{2}) \mathrm{cm}^{2}$
D. $(576+144 \sqrt{2}) \mathrm{cm}^{2}$
E. NOTA
22. $A B C D$ is a cyclic quadrilateral whose diagonals intersect at P. If $A P$ is $6, B P$ is 8 and $A C$ is 15 , find length $D P$.
A. 7
B. $6 \frac{3}{4}$
C. $\frac{15}{8}$
D. $11 \frac{1}{4}$
E. NOTA
23. $A B$ is externally tangent to circles C and D as shown in the figure below. If the radius of C is 8 cm , the radius of D is 15 cm and the distance between the centers is 25 cm , find the area of quadrilateral $A B C D$.

24. In the diagram below, A, B, C, and D are on the circle, $m \angle A B D=70^{\circ}$ and $m \angle B E A=80^{\circ}$. Find $m \angle \mathrm{P}$.

A. 40°
B. 25°
C. 75°
D. 30°
E. NOTA
25. In triangle $A B C, A D=D E=E B=B C$. If the measure of $\angle A B C$ is 100°, what is the measure of $\angle B A C$?

A. 15°
B. 20°
C. 25°
D. 30°
E. NOTA
26. In the figure below, $\triangle A B C \sim \triangle D B A$.

Find the sum of x and y.

A. 13.5
B. 13
C. $9 \frac{1}{2}$
D. 10
E. NOTA
27. In right $\triangle A B C, \sin A=\cos B=\frac{\sqrt{3}}{2}$.

If $A C=8$, find $B C$.
A. $\frac{9}{4}$
B. $4 \sqrt{3}$
C. $8 \sqrt{3}$
D. 4
E. NOTA

Geometry Individual Tes \dagger
 NO CALCULATOR!!!
 Middleton Invitational February 18, 2006

 Solutions

 Solutions}

1. D. The point could be on the line.
2. C. Angles A and B are supplementary. $2 x+10=180-70 . x=50$
3. D. Perimeter 9 means side is 3 . Altitude divides the triangle into a 30-60-90 with short leg 3/2. Long leg is $(3 / 2)(\sqrt{3})$
4. D. Opposite angles of an inscribed quadrilateral are supplementary. $m \angle T=180-30$
5. C. Let $x=$ short leg. The hypotenuse is $2 x$ (the "other" leg is half the hypotenuse $\overline{A B}$) and the long leg is $2 x-2$ (2 less than the hypotenuse). Pythagorean Theorem $x^{2}+(2 x-2)^{2}=(2 x)^{2}$ simplifies to the quadratic $x^{2}-8 x+4=0$. Quadratic Formula yields $x=4 \pm 2 \sqrt{3}$. While $4-2 \sqrt{3}$ is also a solution, it is not a choice. $2 \sqrt{3}+4$ is a choice.
6. B. A regular rhombus is a square. Side length is 15. Area 225. The area of the triangle is 450 (twice the area of the square.) Using the triangle side of 12 as the base, h as the length of the altitude to that side, and the formula $A=(1 / 2) b h$ leads to $(1 / 2)(12) h=450 . h=75$.
7. A. One interior angle of a regular pentagon is 108. $2 x=108 . x=54 . x+8=62$.
8. A. Since $\angle R V S$ is an inscribed angle, the arc it intercepts is $2 a . \angle R U S$ and $\angle R T S$ intercept the same arc. They also measure $a . a+a-a=a$
9. D. $\triangle A B D \sim \triangle A C E$. Let $x=m \overline{B C} \cdot \frac{3}{3+x}=\frac{5}{6} \cdot 5 x+15=18 . x=0.6$
10. A. Diagonal $\overline{D B}$ divides the rectangle into congruent right triangles with sides of 15 and $8 . \overline{D B}$ is the hypotenuse of the Pythagorean triple. Solving, $m D B$ is 17 . The radius of a circle inscribed in a right triangle is half of (the sum of the legs minus the hypotenuse). $r=(1 / 2)(15+8-17)=3$
$\overline{E F}$ is the hypotenuse of right triangle EGF. See diagram.

$m \overline{E G}=8-2 r=8-6=2 . m \overline{G F}=15-2 r=15-6=9$.
By Pythagorean Theorem, $m \overline{E F}=\sqrt{2^{2}+9^{2}}=\sqrt{85}$
11. A. $\overline{C A}$ is perpendicular at the point of tangency. It must pass through the center making it a diameter and $\widehat{A B C}=180^{\circ}$. Subtracting $m \overparen{B C}$, $180^{\circ}-112^{\circ}=68^{\circ}=\mathrm{m} \overparen{A B} . \mathrm{m} \angle B A D$ is half of the arc that it intercepts, making it 34°.
12. A. See diagram. $m \overline{A B}$ is given as $2 \sqrt{3}$, so $m \overline{A C}=\sqrt{3}$ and the length of the altitude $\overline{B C}$ is 3 . Since the orthocenter is also the centroid of an equilateral triangle, $\overline{B E}$ is 2 and $\overline{A E}$ is also 2. The perpendicular bisector, $\overline{F D}$, of chord $\overline{A E}$ passes through the center of the circle at D. Because $\angle \mathrm{FED}$ is $60^{\circ}, \triangle \mathrm{FED}$ is a 30-60-90 and \triangle AED is equilateral with sides $=2$. This is also the radius of the circle. $A=\pi r^{2}=4 \pi$.
13. B. Tangent is opposite (height of the nest) over adjacent (distance to the cliff). Using a proportion, $\frac{3}{7}=\frac{h}{280} . h=120$ plus the height of eye. 125.

D
14. A. The incenter is formed using the angle bisectors. Let the angle at A measure $2 a$ and the angle at B measure $2 b$. Since C measures $32^{\circ}, 2 a+2 b=180^{\circ}-32^{\circ} . a+b=74^{\circ}$. Looking at the triangle formed by the vertices A, D and $B, m \angle A D B+a+b=180^{\circ} . m \angle A D B=106$.
15. $A . \overline{M B}$ is a median. By formula, the length of a median is $\sqrt{\frac{a^{2}}{2}+\frac{b^{2}}{2}-\frac{c^{2}}{4}}$ where a and b are the sides that form the vertex from which the median is connected to the midpoint of the opposite side, c.
$m \overline{M B}=\sqrt{\frac{8^{2}}{2}+\frac{12^{2}}{2}-\frac{16^{2}}{4}}=2 \sqrt{10}$.
16. B. $\angle 1$ and $\angle 4$ are supplementary. $111-a+4 a-42=180 . a=37 . \angle 5$ is vertical with $\angle 1$, so they are congruent. $m \angle 5=111-37=74$.
17. A. The space diagonal, d, of the prism is the diameter of the sphere. $d=\sqrt{12^{2}+15^{2}+16^{2}}=25$. The radius is $25 / 2$. Surface area of a sphere is $4 \pi r^{2}=625 \pi$.
18. $B . \angle C A D$ and $\angle B D A$ are inscribed and equal to half the arcs they intercept. $m \angle C A D=64 / 2=32$.
$m \angle B D A=108 / 2=54$. These two angles are the remote interior angles for exterior $\angle A E B=32+54=86$
19. A. Let $x=$ short part of the hypotenuse. Then, $\frac{x}{7-x}=\frac{4}{9} . x=\frac{28}{13}$ and $7-x=\frac{63}{13}$. Since the
height, h, is equal to the square root of the product of x and $x-7, h=\sqrt{\frac{9 \cdot 7}{13} \cdot \frac{7 \cdot 4}{13}}=\frac{3 \cdot 7 \cdot 2}{13}=\frac{42}{13}$
20. D. $(m \overline{P T})^{2}=(m \overline{P B})(m \overline{P A})=8(8+19)$.
$m \overline{P T}=\sqrt{8 \cdot 27}=\sqrt{4 \cdot 2 \cdot 3 \cdot 9}=6 \sqrt{6}$
21. A. See diagram. Constructing a square around the octagon, the square has sides of length $12+12 \sqrt{2}$. The area of the octagon is the area of the square minus the four triangles at the corners. $(12+12 \sqrt{2})^{2}-4\left[\frac{1}{2}(6 \sqrt{2})^{2}\right]$
Area $=144+288 \sqrt{2}+288-144=288+288 \sqrt{2}$
22. B. The intersection of the diagonals divides each diagonal into two parts. The product of these parts is always equal.
$A P(C P)=B P(D P) . D P=6(15-6) / 8=27 / 4=6 \frac{3}{4}$.

23. $D . \overline{A D}$ and $\overline{B C}$ are both perpendicular to the same segment, so they are parallel and $A B C D$ is a trapezoid. Put a point E on $\overline{A D}$ so that $\overline{C E}$ is parallel to $\overline{A B}$. $A B C E$ is a rectangle. $D E=15-8=7$. The right triangle DEC has a hypotenuse of 25 and one leg of 7 . By the Pythagorean Theorem, the other leg is 24 which is the height of the trapezoid. Area of the trapezoid is $\frac{1}{2}(8+15)(24)=276$.
24. $A . m \angle B A E=180-70-80=30 . \angle B D C$ intercepts the same arc, so it is also 30. $\angle D B P$ is supplementary with the 70 , so it is 110 . $m \angle P=180-110-30=40$.
25. B. Let $m \angle A=a$ and $m \angle C=c$, Then $a+c+100^{\circ}=180^{\circ} . a+c=80^{\circ} . m \angle A E D=a$ and $m \angle B E C=c$ because $\triangle A E D$ and $\triangle B E C$ are isosceles. $m \angle D E B=180-(a+c)=100^{\circ} . m \angle D B E=m \angle B D E=$ $\left(180^{\circ}-100^{\circ}\right) / 2=40^{\circ} . m \angle B D E=2 a$ because it is an exterior angle with both remote interior angles $=a$. $2 a=40^{\circ} . a=20$.
26. A. Corresponding sides of similar triangles are proportional. $\frac{A B}{D B}=\frac{B C}{B A}=\frac{A C}{D A}$ and $\frac{6}{x}=\frac{8}{6}=\frac{12}{y}$ $x=36 / 8=4.5$ and $y=72 / 8=9 . x+y=13.5$
27. C. The right angle is at C. $\triangle A B C$ is similar to a triangle with hypotenuse 1 and long leg $\sqrt{3} / 2$. The short leg is $1 / 2 . \triangle A B C$ is a $30-60-90$ with the 60 at A. Short leg is 8 , Long leg is $8 \sqrt{3}$.
28. C. Consider concave quadrilateral $A B C D$ (a dart) with $\overline{D B}$ the diagonal that is contained within the quadrilateral. (Diagonal $\overline{A C}$ is outside.) The segment from the midpoint of $\overline{A B}$ to the midpoint of $\overline{A D}$ is a midsegment of $\triangle A B D$, parallel to $\overline{D B}$ and half its length. The segment from the midpoint of $\overline{C B}$ to the midpoint of $\overline{C D}$ is a midsegment of $\triangle C B D$, parallel to $\overline{D B}$ and half its length. Segments parallel to the same segment are parallel to each other. Both are half of $D B$ thus congruent. Segments of a quadrilateral that are both parallel and congruent define a parallelogram.
29. B. The minute hand starts out $5 / 6$ of the way around the clock face, thus it is pointing at the 10 . The hour hand begins $5 / 6$ of the way from the 11 to the 12 . Considering the face to be 360 , the minute hand begins at 300 and the hour hand at 355 . The 55 initial angle is decreasing as time continues. To reach a point where the hands are perpendicular, the minute hand must pass the hour hand and continue increasing the angle until the degree measure of the minute hand minus the degree measure of the hour hand is 90 . Solve. $(300+6 m)-(355+.5 m)=90.5 .5 m=145 . m=1450 / 55=26 \frac{4}{11}$.
30. A. One line $=0$ intersections; 2 lines $=1$ intersection; 3 lines $=3$ intersections. Triangular numbers. Double and factor to get $n(n-1) / 2=153$. Solve. $n(n-1)=306$. Factors of 306 which are different by 1 are 17 and 18. The larger factor is $n . n=18$.

1. Let the points of concurrency for a triangle be represented by these letters:

A for incenter, B for orthocenter, C for centroid and D for circumcenter. Record these letters in order to match the descriptions.

First: intersection of the medians
Second: intersection of the angle bisectors
Third: intersection of the perpendicular bisectors of the sides
Fourth: intersection of the altitudes

Geometry Team
Middleton Invitational
February 18, 2006
NO CALCULATOR
2. $A=$ The number of vertices in a polyhedron with 12 faces and 24 edges
$B=$ The number of diagonals in a dodecagon
$C=$ The measure of one exterior angle of a regular nonagon
$D=$ The sum of the first six triangular numbers

Find $A+B+C+D$

Geometry Team

Middleton Invitational
 NO CALCULATOR

3. $A=$ the height in cm of a cylinder with a diameter of 12 cm and a volume of $180 \pi \mathrm{~cm}^{3}$
$B=$ the radius in cm of the base of a cone with a slant height of 9 cm and a surface area of $90 \pi \mathrm{~cm}^{2}$
$C=$ the side, in cm , of the square base of a pyramid with a height of 12 cm and a volume of $400 \mathrm{~cm}^{3}$.
$D=$ the width in cm of a right rectangular prism with a length of 12 cm , height of 7 cm and surface area of $472 \mathrm{~cm}^{2}$.

Find $A+B+C+D$

Geometry Team Middleton Invitational
NO CALCULATOR

February 18, 2006
NO CALCULATOR
4. Angle $B A C$ and angle $D C A$ are right angles. If $A B=10, A C=12$ and $D C=6$, find the area of triangle $A C E$.

5. Circle M is circumscribed about trapezoid $A B C D$ with $A B=10$ and $C D=22$ and a height of 12. Find the area of the circle.

Geometry Team

Middleton Invitational

February 18, 2006
6. The equations of two circles are given below. Let the point (A, B) represent the center of the first circle and C equal the radius. For the second circle, let the point (D, E) represent the center and F equal the radius. Find $A+B+C+D+E+F$.
$y^{2}-x+13=4 y-x^{2}+9 x$
$x^{2}+6 y-14=8 x-y^{2}-3$

Geometry Team
Middleton Invitational
February 18, 2006
NO CALCULATOR
7. Circles A and D of radius 10 cm intersect in such a way that their centers are 10 cm apart. What is the area of the shaded region inside of $A B C D$ and outside of both circles?

8. Consider the following six statements. If the statement is true, add the value in parentheses. If it is false, subtract the value. Find the total.
A. Diagonals of a parallelogram bisect each other (5)
B. Consecutive angles of a kite are supplementary (13)
C. Opposite angles of a rhombus are congruent (23)
D. Diagonals of a rectangle are perpendicular (37)
E. An isosceles trapezoid has exactly one line of symmetry (41)
F. The exterior angle of a regular dodecagon measures 30° (59)

Geometry Team

Middleton Invitational
 NO CALCULATOR

9. Find the area of a triangle formed by the x - $a x i s, y$-axis and the line $y=-\frac{3}{2} x+9$.

Geometry Team Middleton Invitational February 18, 2006
NO CALCULATOR
10. The 90° vertex of isosceles right triangle LUV is the center of square MATH. If the square has a side of length 10 cm and point H is on the hypotenuse of the right triangle, what is the area of the overlapping (shaded) region?

Geometry Team

Middleton Invitational NO CALCULATOR

February 18, 2006 worried) squirrel begins storing nuts for the winter. On day 1 he 11. An industrious (and very wealizes that he must pick up the pace to have enough nuts to last the winter. He stores 13 nuts on day 2,17 on day 3 and 21 on day 4 . If he continues in this pattern, how many TOTAL will he have stored after 30 days?
12. A kite has consecutive sides which measure 20 and 30 cm . If one vertex angle measures 90°, Find the area of the kite.

Geometry Team Middleton Invitational February 18, 2006 NO CALCULATOR
13. Find the ordered pair for the centroid of a triangle whose vertices are located at $(-13,7),(22,-14)$ and $(-15,13)$

Geometry Team
Middleton Invitational
February 18, 2006
NO CALCULATOR
14. $\triangle A B C \sim \triangle M N P$ ($\triangle M N P$ which is not shown) If one side of $\triangle M N P$ is 51 cm , and all sides are integers, then K is the length of the largest possible side of $\triangle M N P . \triangle D E F \sim \triangle X Y Z$ (also, not shown) If $Y Z=85 \mathrm{~cm}$, then H is the largest possible altitude of $\triangle X Y Z$. Find $K+H$.

Geometry Team Middleton Invitational February 18, 2006
NO CALCULATOR
15. The sides of squares $A B C D$ and DEFG are 3 cm and 1 cm respectively. Find the area of triangle $B C H$ expressed as a fraction.

1. $C A D B$ from definitions
2. Euler's Formula for solids: vertices + faces $=$ edges +2
A (number of vertices) $+12=24+2 \quad A=14$
For diagonals in an n-gon, use $n(n-3) / 2$ For a dodecagon, $n=12$. $B=12(12-3) / 2=54$
$C=360 / 9=40 \quad D=1+3+6+10+15+21=56$
$A+B+C+D=14+54+40+56=164$
3. Volume of a cylinder $=\pi r^{2} h$, where h is the height. $180 \pi=\pi\left(\frac{12}{2}\right)^{2} h . \quad A=5$

Surface area of a cone $=\pi r^{2}+\pi r l$ where $r=$ radius of the base of the cone and I is the slant height. $\pi r^{2}+\pi r(9)=90 \pi$ Divide pi out of both sides and solve the quadratic.
$r^{2}+9 r-90=0$. Factors are $(r+15)$ and $(r-6)$. For a positive $r, r=6$. $B=6$
Volume of a square pyramid $=\frac{1}{3} s^{2} h$ where $s=$ side length of the square base and h is the height. $400=\frac{1}{3} s^{2}(12) .100=s^{2} \quad s=10 \quad C=10$

Surface area $=2(l w)+2(l h)+2(w h) .472=2(12) w+2(12)(7)+2(w)(7) . w=8 \quad D=8$
$A+B+C+D=5+6+10+8=29$
4. First find the height of triangle ACE. $h=\frac{10 \cdot 6}{10+6}$ The area of the triangle is $\frac{1}{2} \cdot 12 \cdot h=6 \cdot \frac{15}{4}=\frac{45}{2}$ or $27 \frac{1}{2}$
5. To find the radius begin by constructing the height through the center of the circle and solving two right triangle problems to find $x . r^{2}=5^{2}+(12-x)^{2}$ and $r^{2}=11^{2}+x^{2}$ so that
$25+144-24 x+x^{2}=121+x^{2}$
and $x=2 . \quad r^{2}=121+4=125$
Area $=\pi r^{2}=125 \pi$

6. Combine like terms. Arrange in circle format. Complete the square.
$x^{2}-10 x+\ldots+y^{2}-4 y+\ldots=-13 \quad x^{2}-8 x+{ }_{-}+y^{2}+6 y+\ldots=-3+14$
$x^{2}-10 x+25 _+y^{2}-4 y+\underline{4}_{-}=-13+25+4 \quad x^{2}-8 x+\underline{16}-y^{2}+6 y+\underline{9}_{-}=11+16+9$
$(x-5)^{2}+(y-2)^{2}=16$ center $(5,2)$ radius $4(x-4)^{2}+(y+3)^{2}=36$ center $(4,-3)$ radius 6
$A+B+C+D+E+F=5+2+4+4+(-3)+6=18$
7. Label the point of intersection of the two circles inside of $A B C D$ as E. AED is equilateral with sides of 10. Area equals $\frac{10^{2} \sqrt{3}}{4}=25 \sqrt{3}$. The area of each of the sectors ABE and DCE is $\frac{30}{360} \cdot \pi \cdot 10^{2}=\frac{25 \pi}{3}$. The shaded area is the area of $A B C D$ minus the area of the triangle and both of the sectors.
Area $=100-25 \sqrt{3}-\frac{50 \pi}{3}$
8. A True +5

B False -13
C True +23
D False -37
E True $\quad+41$
$F \quad$ True $\quad+59$
Total is 78
9. The x and y axis make this a right triangle with one leg equal to the y intercept of 9 . To find the x intercept, solve the equation for $y=0 . x=6$ Area $=.5(9)(6)=27$
10. $\angle G U I \cong \angle K U J$ because both are 90-m $\angle G U J$.

Also, both are right triangles with a leg of 5 .
Their areas are equal. The shaded area is simply the area of square KUGH. $5^{2}=25$.
11.

Day	1	2	3	4	\ldots	n
Total Nuts	5	18	35	56		
Factors	1.5	3.6	5.7	7.8	\ldots	$(2 n-1)(n+4)$

For $n=30 \quad(2 \cdot 30-1)(30+4)=2006$
12. The 90° angle has to be between the 20 cm sides because $30 \sqrt{2}>2 \cdot 20$. One diagonal is $20 \sqrt{2}$. To find the other, use the Pythagorean Theorem to find $x=10 \sqrt{7}$. The area of the kite is half the product of the diagonals.
$\left.\frac{1}{2}(20 \sqrt{2})(10 \sqrt{2}+10 \sqrt{7})=200+100 \sqrt{14}\right)$

13. The centroid is located at the mean of the vertex coordinates. $\left(\frac{-13+22-15}{3}, \frac{7-14+13}{3}\right)$ which is $(-2,2)$
14. For $\triangle A B C \sim \triangle M N P$, a scale factor of 3 times 17 cm will produce a side of 51 and integer side lengths for all three sides in the not shown triangle. The largest possible side is $3(24)=72=K$. For $\triangle D E F \sim \triangle X Y Z$, a scale factor of 5 times the 17 cm side will produce a side length of 85 and integer side lengths in the not shown triangle. Also, $\triangle D E F$ is a right triangle. The largest possible altitude is the longest leg. $5(15)=75=\mathrm{H}$. $K+H=72+75=147$
15. $\triangle A B G$ is a right triangle with legs of 3 and $4 . B G$ is $5 . \triangle A B G$ is similar to $\triangle D H G$. To find $D H$, solve the proportion $\frac{3}{4}=\frac{D H}{1}$ to find $D H=\frac{3}{4}$ so that CH is $\frac{9}{4}$ and the area of $\triangle \mathrm{BCH}$ is $\frac{1}{2} \cdot \frac{3}{1} \cdot \frac{9}{4}=\frac{27}{8}=3.375$

