Some important theorems.

The	The additive identity is unique. If a is an additive identity then $a = 0$		
	Let <i>a</i> be an additive identity		
	a + x = x		
	(a+x)+-x=x+-x		
	a + (x + -x) = x + -x		
	a + 0 = 0		
	a = 0		

The additive identity is unique. If a is an additive identity then a = 0

The opposite of a number is unique. If a is an opposite of x then a = -x

Let <i>a</i> be an opposite of <i>x</i> .	
a + x = 0	
(a+x)+-x=0+-x	
a + (x + -x) = 0 + -x	
a+0=0+-x	
a = -x	

 $0 \cdot x = 0$ Zero times a number is an additive identity

$x + 0 \cdot x$	
$1 \cdot x + 0 \cdot x$	
(1+0)x	
$1 \cdot x$	
Х	
$x + 0 \cdot x = x$	
$0 \cdot x = 0$	

 $-1 \cdot x = -x$ Negative one times a number is the opposite of that number

$-1 \cdot x + x = -1 \cdot x + x$	
$-1 \cdot x + 1 \cdot x$	
(-1+1)x	
$0 \cdot x$	
0	
$-1 \cdot x = -x$	