1) Find all values of x such that $\log_2 x^2 = 4$?

A) 2 and 3

B) 1 and 2

A)	4	B)	2	C)	4,-4	D)	2,-2	E)	NOTA
2)	Evaluate: $\log_7 5 - \log_7 (5/7)$.								
A)	-1	B)	2	C)	1	D	0	E)	NOTA
3)	For what positive values of x and y does $(\log_x y)(\log_y x) = 1$?								
A)	x > 1	B)	y > 1	C)	$x,y \ge 1$	D)	all positive v	alue	s of x and y E) NOTA
4)	Evaluate $\log_{\sqrt{8}} \sqrt[3]{16}$.								
A)	2	B)	9/8	C)	8/9	D)	1/2	E)	NOTA
	Find z if $\log \sqrt{3}/3$					D)	3	E/	NOTA
A)	V 3/3	D)	V 3	C)	173	D)	,	L)	NOTA
6)	For how man	ny po	sitive integer	s n is	s the value of	log	2/3 n an inte	ger?	
A)	t	B)	2	C)	infinitely ma	ny	D) non	e	E) NOTA
7)	Given that a is positive, simplify: $\frac{\log a^2}{\log a}$.								
A)	а	B)	2	C)	$\log a$	D)	a^2	E)	NOTA
8)	Find x: log ₄	/25	x = -3/2.						
A)	8/125	B)	125/8	C)	625/16	D)	16/625	E)	NOTA
9)	Between wha	ıt tw	o consecutive	integ	gers is $\left(1+\frac{1}{1}\right)$	1 0100	-) ^{10too} ?		

C) 3 and 4 D) 99 and 100 E) NOTA

11) Given positive reals a and b such that $\log_a b + \log_b a = 2$, which of the following must be true?

D) infinitely many

E) NOTA

10) At how many points do the graphs of $y = \log_2 x$ and $x = \log_3 y$ intersect?

C) 2

B) 1

A) 0

A) <i>a</i> > <i>b</i> E) NOTA	B) either a =	2b or b = 2a	C) $a = b$ D)	either $a = b^2$ or $b = a^2$			
12) Given that	$\log_{10} 4 = x, \text{ with}$	nich of the follow	ing is equal to lo	g ₁₀ 5?			
A) 1-x	B) $1-2x$	C) $2x-1$	D) $1-x/2$	E) NOTA			
13) If log _a b =	= 64 , find \log_a	b^3 .					
A) 96	B) 16	C) 512	D) 128/3	E) NOTA			
14) Find all y s	uch that $\log_y(y)$	(+30) = 2.					
A) -5	B) -5,6	C) 1/6	D) 6	E) NOTA			
15) Find the sur	m of all y such th	at $\frac{3^{2y+1}+3^2}{3^y} =$	28.	154			
A) 1	B) 3	C) 0	D) -1	E) NOTA			
16) Order the fo	ollowing from gre	eatest to least: x =	$=2^{2^{2^{2^{2^{2}}}}}$, $y=3^{3^{3^{2}}}$	$, z = 4^{4^4}$.			
A) z, y, x	B) y, x, z	C) x, y, z	D) x, z, y	E) NOTA			
17) Evaluate $\frac{(}{(l_0)^2}$	log ₂ 4)(log ₄ 8) og ₃ 9)(log ₉ 27	(log ₈ 16)(log ₉ (log ₂₇ 81)(log	2048 4096) 32187 6561)	88			
A) 1	B) 3/2	C) 5/3	D) 4/3	E) NOTA	. :		
18) The first (not final!) three digits of 11 ¹⁵ are ABC. The last three digits of 11 ¹⁵ are DEF. Find A+B+C+D+E+F.							
A) 20	B) 24	C) 27	D) 31	E) NOTA			

19) Given that base 5?	$\log_2 5 = 2.322$, what is the sma	allest positive integer n such that 2" has 20 digits when written in				
A) 47	B) 46	C) 45	D) 44 E) NOTA				
20) Evaluate:	3 ^{log, 3500} .						
A) 3 ⁵⁰⁰	B) 3 ⁷⁵⁰	C) 3 ¹⁰⁰⁰	D) 3 ²⁵⁰ E) NOTA				
21) Find the sum of all values of x which satisfy $2^{x+4} - 4^x = 63$.							
A) 4	B) log ₂ 63	C) 2	D) 16 E) NOTA				
 Which of the following 3 savings accounts should I prefer? Assume that all 3 pay interest annually and all interest is reinvested in the account. Pays 4% annual interest for 2 years, then 6% annual interest for 2 years. Pays 6% annual interest for 2 years, then 4% annual interest for 2 years. Pays 5% annual interest for 4 years. 							
A) I	B) II	C) III	D) They are all equivalent E) NOTA				
23) Given that $\log_{10} 2 \approx 0.3010$, how many digits are in 25 ⁵² in base 10?							
A) 70	B) 71	C) 72	D) 73 E) NOTA				
24) Order the following from least to greatest: $x = 10^{20^{20}}$, $y = 30^{20^{10}}$, $z = 10^{30^{20}}$, $w = 20^{30^{10}}$.							
A) y, w, z, x	B) w, y, x, z	C) x, z, w, y	D) z, x, y, w E) NOTA				
25) At how many points do the graphs of $y = \log_4 x$ and $y = \log_8 x \sqrt{x}$ coincide?							
A) None	B) 1	C) 2	D) infinitely many E) NOTA				
26) For how many positive integers n is $6^n < 5^n + 4^n$?							
A) I	B) 2	C) 3	D) infinitely many E) NOTA				

- 27) What integer is closest to $\sum_{i=1}^{10} \log_{720} i$?
- A) 1
- B) 2

- C) 3 D) 4 E) NOTA
- 28) Evaluate $\left[\frac{1}{\log_{2^{1000}} \pi^{1000}} + \frac{1}{\log_{5^{1000}} \pi^{1000}}\right]$, where $\lfloor x \rfloor$ is the greatest integer less than or equal to x.
- A) 0
- B) 2
- C) 3
- D) 10
- E) NOTA
- 29) If, for some pair of positive real numbers x and y, we have $\log_x y > x$, then which of the following must be
- A) y > 1

- B) y < x C) x > 1 D) y > x E) NOTA
- 30) Find the greatest integer n such that $59^n + 60^n > 61^n$.
- A) 28
- B) 29
- C) 30
- D) 32 E) NOTA