Limits \& Derivatives - Mu Level 2000 Mu Alpha Theta National Convention

Note: For each of the following questions, answer E, NOTA, means "None of th

1. Suppose $f(3)=2, f^{\prime}(3)=5$ and $f^{\prime \prime}(3)=-2$. Then $\frac{d^{2}}{d x^{2}}\left(f^{2}(x)\right)$ at $\mathrm{x}=3$ is equa
A. -20
B. 20
C. 38
D. 42
E. NOTA
2. The graph of $f^{\prime \prime}$ is shown below. If $f^{\prime}(1)=0$, then $f^{\prime}(x)=0$ at $x=1$ and $x=$

A. 0
B. 2
C. 3
D. 4
E. NOTA
3. If $f(x)$ is continuous at the point where $x=a$, which of the following statement false?
A. $\lim _{x \rightarrow a} f(x)$ exists
B. $\lim _{x \rightarrow a} f(x)=\mathrm{f}(\mathrm{a})$
C. $f^{\prime}(a)$ exists
D. $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$
E. NOTA
4. The figure shown consists of a rectangle capped by a semicircle. Its area is 10 minimum perimeter of the figure is approximately

A. 10.584 yd
B. 28.284 yd
C. 37.793 yd
D. 38.721 yd
E. NOTA

Limits \& Derivatives - Mu Level 2000 Mu Alpha Theta National Convention

For questions $5-11$, use the table below showing the values of differentiable functions f and g.

\mathbf{x}	\mathbf{f}	\mathbf{f}^{\prime}	\mathbf{g}	\mathbf{g}^{\prime}
0	2	1	5	-4
1	3	2	3	-3
2	5	3	1	-2
3	10	4	0	-1

5. If $B=f \bullet g$, then $B^{\prime}(2)=$
A. -20
B. -7
C. -6
D. -1
E. NOTA
6. If $K(x)=\left(\frac{f}{g}\right)(x)$, then $K^{\prime}(0)=$
A. $-\frac{13}{25}$
B. $-\frac{1}{4}$
C. $\frac{13}{25}$
D. $\frac{13}{16}$
E. NOTA
7. If $P(x)=f\left(x^{3}\right)$, then $P^{\prime}(1)=$
A. 2
B. 6
C. 8
D. 12
E. NOTA
8. If $\mathrm{H}(\mathrm{x})=\sqrt{f(x)}$, then $\mathrm{H}^{\prime}(3)=$
A. $\frac{1}{4}$
B. $\frac{1}{2 \sqrt{10}}$
C. $\frac{2}{\sqrt{10}}$
D. $4 \sqrt{10}$
E. NOTA
9. If $S(x)=f^{-1}(x)$, then $S^{\prime}(3)=$
A. -2
B. $\frac{1}{25}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$
E. NOTA
10. If $M(x)=f(g(x))$, then $M^{\prime}(1)=$
A. -12
B. -6
C. 6
D. 12
E. NOTA
11. If $A=f+2 g$, then $A^{\prime}(3)=$
A. -2
B. 2
C. 7
D. 8
E. NOTA

Limits \& Derivatives - Mu Level $\mathbf{2 0 0 0}$ Mu Alpha Theta National Convention
12. If $f(x)=\left\{\begin{array}{cc}x^{2} & \text { for } x \leq 1 \\ 2 x-1 & \text { for } x>1\end{array}\right.$, then
A. $f(x)$ is not continuous at $x=1$
B. $f(x)$ is continuous at $x=1$ but $f^{\prime}(1)$ does not exist
C. $f^{\prime}(1)$ exists and equals 1
D. $f^{\prime}(1)=2$
E. NOTA
13. The table below shows values of $f^{\prime \prime}(x)$ for various values of x.

\mathbf{x}	-1	0	1	2	3
$\mathbf{f}^{\prime \prime}(\mathbf{x})$	-4	-1	2	5	8

The function f could be
A. a linear function
B. a quadratic function
C. a cubic function
D. A fourth-degree function
E. NOTA
14. Based on the values of f shown in the table below, estimate $f^{\prime}(2)$.

\mathbf{x}	1.92	1.94	1.96	1.98	2.00
$\mathrm{f}(\mathrm{x})$	6.00	5.00	4.40	4.10	4.00

A. -0.10
B. -0.20
C. -5
D. -10
E. NOTA
15. If $x=t^{2}-1$ and $y=t^{4}-2 t^{3}$, then when $t=1, \frac{d^{2} y}{d x^{2}}$ is
A. 1
B -1
C. 0
D. 3
E. NOTA
16. If $y=x^{2}+x$, then the derivative of y with respect to $\frac{1}{1-x}$ is
A. $(2 x+1)(x-1)^{2}$
B. $\frac{2 x+1}{(1-x)^{2}}$
C. $\frac{3-x}{(1-x)^{3}}$
D. $2 x+1$
E. NOTA

Limits \& Derivatives - Mu Level

 2000 Mu Alpha Theta National Convention17. Suppose $\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x}=1$. It follows necessarily that
A. g is not defined at $\mathrm{x}=0$.
B. $g^{\prime}(0)=1$
C. $g^{\prime}(1)=0$
D. g is not continuous at $x=0$
E. NOTA
18. $\lim _{x \rightarrow \infty} \sin x$
A. is nonexistent
B. is infinity
C. is 1 or -1
D. oscillates between -1 and 1
E. NOTA
19. Suppose $\lim _{x \rightarrow 3^{-}} f(x)=-1 ; \lim _{x \rightarrow 3^{+}} f(x)=-1 ; f(-3)$ is not defined. Which, if any, of the following statements is false?
A. $\lim _{x \rightarrow-3} f(x)=-1$
B. f has a removable discontinuity at $\mathrm{x}=-3$
C. f is continuous everywhere except at $x=-3$
D. If we redefine $f(-3)$ to be equal to -1 , then the new function will be continuous at $x=-3$.
E. NOTA
20. The value of $\lim _{h \rightarrow 0} \frac{e^{a+h}-e^{a}}{h}$ is
A. 0
B. $\frac{1}{a}$
C. 1
D. e^{a}
E. NOTA
21. A particle moves along the x-axis so that at time t its position is given by $x(t)=(t+1)(t-3)^{3}$. For what values of t is the velocity of the particle increasing?
A. $t>3$
B. $0<t<3$
C. $1<\mathrm{t}<3$
D. $\mathrm{t}<1$ and $\mathrm{t}>3$
E. NOTA

Limits \& Derivatives - Mu Level

2000 Mu Alpha Theta National Convention
22. If $f(x)=\left\{\begin{array}{ll}e^{-x}+2 & \text { for } x<0 \\ a x+b & \text { for } x \geq 0\end{array}\right.$ is a differentiable function at 0 , then $\mathrm{a}+\mathrm{b}=$
A. 0
B. 1
C. 2
D. 3
E. NOTA
23. Let f be a function defined for all real numbers and let a and b be real numbers. Which of the following statements is equivalent to "if $\varepsilon>0$, then there exists $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-b|<\varepsilon^{\prime \prime}$?
A. $\lim _{x \rightarrow 0}|f(x)-b|=a$
B. $\lim _{x \rightarrow a} f(x)=0$
C. $\lim _{x \rightarrow a} f(x)=b$
D. $\lim _{x \rightarrow b} f(x)=a$
E. NOTA
24. The equation of the line tangent to the curve $y=\frac{k x+8}{k+x}$ at $\mathrm{x}=-2$ is $\mathrm{y}=\mathrm{x}+4$. What is the value of k ?
A. -3
B. -1
C. 1
D. 3
E. NOTA
25. Let f be a differentiable function for all x . Which of the following must be true?
I. $\frac{d}{d x} \int_{0}^{3} f(x) d x=f(x)$
II. $\int_{3}^{x} f^{\prime}(x) d x=f(x)$
III. $\frac{d}{d x} \int_{3}^{x} f(x) d x=f(x)$
A. II only
B. III only
C. I and II only
D. II and III only
E. NOTA
26. If f is a differentiable function such that for all $x>0, f\left(x^{2}\right)=2 x^{3}$, then $f^{\prime}(4)=$
A. 4
B. 6
C. 12
D. 16
E. NOTA

Limits \& Derivatives - Mu Level

2000 Mu Alpha Theta National Convention
27. To prove that $\lim (4 x+1)=9$, which 8 could be used?

1. $8=-$
6
$\begin{array}{r}6 \\ - \\ \hline\end{array}$
$111.8=-$
8
H. $8=-$
2. $8=-$
A. I only
B. H only
C. III only
D. I and U only
E. NOTA
3. If $f(X)=x 3-x-6$ for all real numbers x, and if g is the inverse function of f, then $f U P) g,(O)=$
A. 0
B. I
C. -I
D. -6
E. NOTA
4. A square is inscribed in a circle. How fast is the area of the square changing when the area of the circle is increasing one square inch per minute?
A.
I in'/min
B.
7 r in $2 / \mathrm{min}$
C. I in $2 / \mathrm{minD}$.
2 in'/min 2
E. NOTA
2
5. If f and g are twice differentiable functions such that $g(x)=e^{\prime} f(x)$ and $g^{\prime \prime}(x)=e x h(x)+e^{\prime} f(x)$, then $h(x)=$
A. $f^{\prime}(x)+f^{\prime \prime}(x)$
B. $\mathrm{f}(\mathrm{X})+(\mathrm{f},(\mathrm{X}))_{2}$
C. $(\mathrm{f},,(\mathrm{X})+\mathrm{f},,(\mathrm{X})) 2$
D. $2 f^{\prime}(x)+f^{\prime \prime}(x)$
E NOTA
