#### CALCULUS APPLICATIONS - MU LEVEL PAGE 1 2000 Mu Alpha Theta National Convention

"NOTA" in each question denotes "None of the Above"

1) 
$$\int dx =$$

A) 1 + C

B) C

C)  $\frac{dx^2}{2}$  + C D) x + C

E) NOTA

2) A rectangle of perimeter 20 inches is rotated about one of its sides to generate a right circular cylinder. The rectangle which generates the cylinder with the largest volume has an area, in square inches, of: (round to nearest unit)

A) 21

B) 22

C) 24

D) 25

E) NOTA

3) What is  $\frac{dy}{dx}$  if  $y = x^{x+1}$ ?

A)  $(x \ln(x) + x + 1)(x^x)$  B)  $(x + 1)(x^x)$  C)  $x^{x+1} \ln x$ 

D) ln x

E) NOTA

4) Find the coefficient of the term containing x14 from the MacLaurin expansion of sin(x2).

A)  $-\frac{1}{7!}$ 

B)  $\frac{1}{7}$ 

C) 0

D)  $\frac{1}{141}$ 

E) NOTA

5) Find the area contained in the polar graph of  $r=3 \sin \Theta \cos \Theta$ .

A)  $\frac{\pi}{4}$ 

B)  $\frac{\pi}{16}$  C)  $\frac{9\pi}{4}$  D)  $\frac{9\pi}{8}$ 

E) NOTA

6) The exact average value of  $f(x) = \frac{1}{\sqrt{x^2 + 1}}$  on [0,3] is

A)  $\frac{10 + \sqrt{10}}{20}$  B)  $\frac{1}{3} \ln(3 + \sqrt{10})$  C)  $\frac{3}{2}$  D)  $\frac{\pi - 2 \tan^{-1} \frac{1}{3}}{6}$ 

### CALCULUS APPLICATIONS - MU LEVEL PAGE 2 2000 Mu Alpha Theta National Convention

| 7) | Approximate the area under | $y = \frac{1}{x}$ or | n [7 <b>,</b> 9] | using | 4 subdivis | ions and | Simpson's | Method, | to the |
|----|----------------------------|----------------------|------------------|-------|------------|----------|-----------|---------|--------|
|    | ten-thousandths place.     |                      |                  |       |            |          |           |         |        |

- A) .2410
- B) .2513
- C) .2516
- D) .2622
- E) NOTA

8) A bowl is shaped like the graph of  $z = x^2 + y^2$ . Water is flowing into the bowl at the rate of 1 unit How fast is the water level rising when it is 1 unit deep (unit/sec)?

- A)  $\frac{1}{\pi}$
- B)  $\frac{2}{\pi}$
- C) π
- D)  $\frac{1}{2\pi}$
- E) NOTA

9) Approximate  $\sqrt[3]{29}$  using differentials to the nearest thousandths place:

- A) 3.071
- B) 3.072
- C) 3.073
- D) 3.074
- E) NOTA

10) At any point (x,y) on a certain curve, the slope is equal to xy2. If the curve contains the point (0,4), its equation is:

- A)  $y = \frac{4x^2}{x^2 2}$  B)  $y = \frac{1 4x^2}{2}$  C)  $y = \frac{4}{1 2x^2}$  D)  $y = \frac{4}{1 4x^2}$  E) NOTA

11) Find  $\frac{d^2y}{dy^2}$  if  $X(t) = \sqrt{t^2 + 3}$  and  $y(t) = \sin(t^2)$ .

- A)  $2x \cos(x^2 3)$  B)  $(2x 3) \sin(x^2 3)$  C)  $2x \sin(x^2 3)$  D)  $2x \cos x^2 3$
- E) NOTA

12) The volume of the solid generated by revolving about y = x - 7 the region bounded by  $y = \frac{1}{\sqrt{y}}$ and the x-axis between x=1 and x=4. The tenths digit of the exact volume is:

A) 4

B) 5

C) 6

- D) 7
- E) NOTA

# CALCULUS APPLICATIONS – Mu LEVEL PAGE 3 2000 Mu ALPHA THETA NATIONAL CONVENTION

| 13) | An ice cream cone contains 2 perfectly symmetrical, spherical scoops of chocolate ice cream                             |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | each with a radius of 4.3 cm. The ice cream melts out the bottom of the cone and drips to t                             |  |  |  |  |  |
|     | ground at .05 $\frac{\text{cm}^3}{\text{sec}}$ per scoop. Assuming that the scoops of ice cream stay perfectly symmetry |  |  |  |  |  |
|     | and spherical throughout the melting process and each melts at the same rate, exactly he                                |  |  |  |  |  |
|     | is the total surface area of the scoops changing when the radius of each scoop is 3 cm?                                 |  |  |  |  |  |

E) NOTA

| A) $\frac{1}{60}$ | B) $\frac{1}{30}$ | C) $\frac{1}{15}$ | D) |
|-------------------|-------------------|-------------------|----|
|                   |                   |                   |    |

14) Find the approximate value for C that satisfies the mean value theorem on [0,1] for  $f(x) = \frac{\tan^{-1} x}{x^2 + 1}$ . (Round to the nearest thousandth).

- A) .308 B) .393 C) .471 D) .500 E) NOTA
- 15) Approximate the value for  $\int_{0}^{6} (x^3 2x^2 + 4) dx$  using trapezoidal rule and 3 subdivisions of equivalent.
- A) 190 B) 204 C) 232 D) 464 E) NOTA
- 16) Which of the following is a line normal to the curve  $y = \frac{1}{x^2}$  at (1,1)

A) 
$$x - 2y = 1$$
 B)  $y = \frac{x^4}{2}$  C)  $y = \frac{x^4}{8}$  D)  $2y - x = 1$  E) NOTA

17) 
$$\lim_{h\to 0} \frac{\ln(\ln(6+h)) - \ln(\ln 6)}{h}$$
  
A) .2986 B)  $\frac{1}{6}$  C)  $\frac{1}{6\ln 6}$  D)  $\frac{1}{\ln 6}$  E) NOTA

18) The maximum value of  $f(x) = xe^{-x^2}$  is

A) 0 B) 
$$\frac{1}{\sqrt{2}}$$
 C)  $\frac{1}{\sqrt{2}e}$  D)  $\infty$  E) NOTA

#### CALCULUS APPLICATIONS - MU LEVEL PAGE 4 2000 Mu Alpha Theta National Convention

- 19) The base of a solid is the graph that is defined by the area bounded by  $y = \sin x$  and  $y = \cos x$  $[0, \frac{\pi}{4}]$ . Each cross section perpendicular to the x-axis is a semicircle with diameter lying in the xy plane. Approximate the volume of the solid to the ten - thousandths place.
- A) .1121
- B) .4481
- C) .4483
- D) .8966
- E) NOTA

- 20) If  $\int_{0}^{x^{2}} (t^{4} \sin^{2} t^{2} + \frac{1}{2}t^{3}) dt = h(x)$ , find h'(x).
- A)  $3x^{14} \sin^2 x^6 + \frac{3}{2}x^{11}$  B)  $9x^{16} \sin^2 x^6 + \frac{3}{2}x^{11}$  C)  $x^{12} \sin^2 x^6 + \frac{1}{2}x^9$  D)  $x^4 \sin^2 x^2 + \frac{1}{2}x^3$  E) NOT
- 21) What is  $\frac{dy}{dx}$  if  $x^2 + y^2 = \sin(xy)$ ?
- A)  $\frac{-\cos(xy)-2x}{2y-x}$  B)  $\frac{y-2x}{2y-x\cos(xy)}$  C)  $\frac{-y\cos(xy)+2x}{x\cos(xy)+2y}$  D)  $\frac{y\cos(xy)-2x}{2y-x\cos(xy)}$  E) NOTA

- 22) Calculate exactly  $\int_{-\infty}^{e^{e^{x}}} \frac{dx}{x(\ln x)(\ln(\ln x))(\ln(\ln(\ln x)))}$
- A) 0

- B) In 2
- C) 2 In 2
- D)  $(\frac{1}{2})(e^{e^{e^2}} e^{e^e})$  E) NOTA
- 23) A 20-foot ladder is placed against a flat, vertical wall. The weather changes from bright and sunny to dark and rainy. Since it is rainy, the ladder begins to slip down the wall at .1  $\frac{\text{feet}}{\text{cos}}$ Exactly how fast will the bottom of the ladder be moving away from the wall when the top of th ladder is 5 feet from the ground? ( $\frac{\text{feet}}{\text{sec}}$ )
- A)  $\frac{\sqrt{15}}{10}$
- B) .3873
- C)  $\frac{\sqrt{15}}{150}$
- D) Not enough info
- E) NOTA

### CALCULUS APPLICATIONS — MU LEVEL PAGE 5 2000 Mu Alpha Theta National Convention

- 24) Find the domain of  $y = \frac{1}{\sqrt{\ln(\sqrt{x^2 1})}}$ .
- A) [-1,1]
- B)  $(-\infty, \sqrt{2}] \cup (\sqrt{2}, \infty)$  C)  $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$  D)  $(-\sqrt{2}, \sqrt{2})$  E) NOTA

- 25) The half-life of Floridium is 1800 years. If you have 6 grams of it now, approximately how many years ago did you have 180 grams? (round to nearest hundredth)
- A) 30.00
- B) 366.83
- C) 8832.00
- D) 8832.40
- E) NOTA
- 26) The first three terms of the MacLaurin series of the function,  $f(x) = \int_{1}^{x} \frac{\sin t}{t} dt$  are:

- A)  $1 \frac{1}{6}x^2 + \frac{1}{120}x^4$  B)  $x \frac{1}{18}x^3 + \frac{1}{600}x^5$  C)  $x^2 \frac{1}{6}x^4 + \frac{1}{120}x^6$  D)  $\frac{1}{3}x^3 \frac{1}{30}x^5 + \frac{1}{720}x^7$  E) NOTA
- 27) The volume of a cube is decreasing at a rate of  $40 \frac{\text{cm}^3}{\text{sec}}$ . How fast, in  $\frac{\text{cm}^2}{\text{sec}}$ , is the surface area the cube decreasing at the instant when each edge of the cube is 5 cm?
- A) -32
- B)  $-\frac{8}{15}$  C)  $\frac{8}{15}$
- D) 32
- E) NOTA
- 28) The motion of a particle has the jerk motion equal to -8t, and is stationary and not accelerating at t=3. Which of the following gives the particle's velocity at any time (t)?
- A)  $-\frac{4t^3}{3} + 36t 72$  B)  $-\frac{4t^3}{3} + 36t$  C)  $-4t^2$  D)  $-4t^2 + 36$  E) NOTA

- 29) A baseball player smashes a home run over the right field wall, 400 feet from home plate. The ball travels in a parabolic path of x(t) = 150t and  $y(t) = 3 + 53t - 16t^2$ , in feet. Exactly how far above the top of the 9 foot tall wall did the ball cross before it landed in the stands?
- A)  $\frac{8}{3}$

- B)  $\frac{194}{9}$
- C)  $\frac{275}{9}$
- D)  $\frac{356}{9}$
- E) NOTA

## CALCULUS APPLICATIONS - Mu LEVEL 2000 Mu ALPHA THETA NATIONAL CONVENTION

PAGE 6

30) If  $\lim_{x\to 3} \frac{9(3) - 9(x)}{x - 3} = 1.743$ , then at the point at x=3,, the graph of g(x) must be

A) decreasing B) increasing Q concave up D) concave downE) NOTA